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Abstract: Analysis of high frequency characteristics for a 
meander line slow-wave structure (ML-SWS) has been 
carried out by field-matching methods with the dyadic 
Green’s function. The effect from thickness of the meander 
line was considered and the theoretical results had been 
compared with the simulation ones. 
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Introduction 
Owing to the traditional slow-wave structure (SWS), the 
core of the TWT, is difficult to be fabricated by 
conventional fabrication technologies, with the operation 
frequency moving to Ka-band or above [1]. A new type of 
the SWS, the meander line slow-wave structure, compatible 
with the microfabrication technologies, comes into being 
[2]. To the best of our knowledge, the most analyses of the 
ML-SWS are exclusively with numerical simulations [2-3], 
and the few theoretical analyses are based on ignoring the 
thickness of the ML [4-5]. 
 
Model and Results 
The ML-SWS consists of the meander line and Rectangular 
waveguide as shown in figure 1. For lossless system, the 
model can be simplified with just one period of the ML-
SWS, according to Fouquet’s theorem. The electrical field 
as source can excite the magnetic fields, RWH



 in the 
rectangular waveguide, and MLH



in the meander line, 
respectively. They satisfy the field-matching equation as: 

 ( ) ( ), Meander-LineRW MLH R H R R= ∈
    

  (1) 
The magnetic field can be described with the equivalent 
electrical field by the following equation: 

 ( ) ( ) ( )( )0 S '
ˆ, ' ' S'H R i G R R n E R dωε= − ⋅ ×∫



      

  (2) 

where ( )'E R
 

 is the equivalent electrical fields and 
( ), 'G R R



  

 is the dyadic Green’s function, and the ( )'E R
 

 can 
be written with sets of Ritz basic functions{ }nϕ , which are 
shown as below: 

 n n
n
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(a) 

 
(b)                              (c) 

Figure 1. Geometry of the ML-SWS. (a) 3D model view, (b) 
front view, (c) top view. 
 

The Ritz basic functions { }nϕ can be obtained according to 
[6]. For instance, the nϕ  in x-axis direction can be written: 

 ( ) ( )( )0 1 0ˆ cosn x n x b b bϕ π= − −  (4) 
The dyadic Green’s function G





 can be divided into two 
part, TG





 for the sum of “TE” and “TM” modes, and 
TEMG




for the “TEM” mode. 
 T TEMG G G= +

  

  

  (5) 
where TG





 and TEMG




can be written as following: 
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Hence, considering the superposition principle, the field-
matching equation can be rewritten with the matrix form: 

 [ ][ ] 0Y A =   (8) 
where the matrix [ ]A  is a set of variables { }nA . In fact, it is 
also a vector. The matrix [ ]Y  can be expressed by variables 
ω  and θ . The nonzero solution exists only if the value of 
corresponding determinant Y  is zero. 
Accordingly, the dispersion characteristic equation is 
obtained as following: 

 0Y =   (9) 
In addition, according to equation (8), the variable nA  can 
be solved for concrete frequency 0ω  and phase shift 0θ , 
namely, 

0 0,|nA ω θ . Considering no exciting source, the 
electro-magnetic field in the ML-SWS can be obtained: 
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The interaction impedance 
0 0,Rω θ  can be calculated: 

 ( )0 0 0 0
0 0

2
2

out, ,,
( ) 2R E R Pω θ ω θω θ

β=
 

 (11) 

where P  is the total power, ( )
0 0, 0 2s Tω θβ θ π= + , T  is the 

length of a period.  
Here, an example is calculated, and the parameters of the 
ML-SWS are exhibited in Table 1: 

Table 1. The parameters of the ML-SWS (mm) 
 

b=3 b0=1 b1=1.4 a=3 a0=2.2 
a1=2.5 z0=0.3 z1=1.3 z2=1.6 zT=2.6 

 
Figure 2. Comparison of dispersion of a ML-SWS. 
As shown in figure 2. The dispersion results carried out by 
the proposed method were compared with those simulated 
with HFSS code, the relative errors between them is under 
7%, which demonstrates that the theoretical results and 
simulated ones are in good agreement.  

In figure 2 and 3, the dispersion of mode 1 is very close to 
that of mode 2 at point A. As shown in figure 3. When 
z2=1.6 mm and z2=2.0 mm, there is obvious band gap 
between the dispersions of adjacent two modes. When 
z2=2.3 mm, the corresponding structures and sizes of two 
half-period of the ML are same, and dispersions of two 
modes are very close to each other near point A, i.e., the 
band gap seems to disappear. 

 
Figure 3. Effect of a parameter z2 on the dispersion of the 
ML-SWS. 
 
Conclusions 
For analyzing the high frequency characteristics of the ML-
SWS, the field-matching method with the dyadic Green’s 
function has been utilized in this paper. The theoretical and 
HFSS simulated results were compared, the relative errors 
in presented range are under 7%. The band gap of the 
dispersions may disappear when the corresponding 
structures and sizes of two half-period of the ML are same 
for the adjacent two slow wave modes. The more results 
and analysis will be presented on the conference. 
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