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Abstract: By solving the time-dependent Schrödinger 

equation, we construct an exact analytical solution for 

nonlinear ultrafast electron emission from a dc-biased metal 

surface illuminated by two-color laser fields. Our results show 

a large dc bias can significantly increase the photoemission 

current, while maintaining a strong current modulation with 

respect to the phase delay of the two-color lasers. Application 

of our model to time-resolved photoelectron spectroscopy 

shows the dynamics of n-photon exited states depends strongly 

on the dc field.  
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Introduction 
Electron emission from nanostructures, as driven by high-

intensity lasers, is a robust method to control electron dynamics 

in ultrafast scales. It is important to the development of time-

resolved electron microscopes, tabletop particle accelerators, 

free electron lasers, and nanoscale vacuum electronics [1-3]. 

Recently, photoelectron emission from nanotips driven by two-

color lasers has aroused intense interests [4-6], because of the 

relatively straightforward manipulation of two-color waveform 

and the substantial emission current modulation depth. 

However, the role of dc bias on two-color photoemission 

processes is not well studied. In this work, we present an exact 

analytical solution for nonlinear ultrafast photoemission from a 

dc-biased metal surface driven by two-color laser fields, by the

solving time-dependent Schrödinger equation (TDSE) exactly

[6-8]. Combined effects of a dc electric field and two-color

laser fields are systematically analyzed.

Our one-dimensional (1D) model (see Fig. 1) considers 
electrons with initial energy 𝜀 emitted from a metal surface at x 
= 0 under a dc electric field 𝐹0 and the illumination of two-color
laser fields 𝐹1cos(𝜔𝑡) and 𝐹2cos(𝛽𝜔𝑡 + 𝜃), where 𝐹1  and 𝐹2
are the amplitudes of laser fields, 𝜔 is the fundamental laser 
frequency, 𝛽 is a positive integer, and 𝜃 is the relative phase 
[8]. The potential energy can be written as Φ(𝑥, 𝑡) = 0 for x < 0 
inside the metal, and Φ(𝑥, 𝑡) = 𝑊 + 𝐸𝐹 − 𝑒𝑥𝐹0 −
𝑒𝑥𝐹1 cos(𝜔𝑡) − 𝑒𝑥𝐹2 cos(𝛽𝜔𝑡 + 𝜃) for 𝑥 > 0 in the vaccum,
where 𝐸𝐹  and 𝑊 are the metal Fermi energy and work function
respectively. By solving TDSE, 
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the exact solution of electron wave function 𝜓(𝑥, 𝑡) for 𝑥 < 0 
and 𝑥 > 0 is obtained [8], which denotes the superposition of a 
set of electron waves with eigenenergies 𝜀 + 𝑛ℏ𝜔. By applying 
boundary conditions that both 𝜓(𝑥, 𝑡)  and 𝜕𝜓(𝑥, 𝑡)/𝜕𝑥  are 
continuous at x = 0, the amplitude of wave function at each state 

can be determined. Following the probability current density 
𝐽(𝑥, 𝑡) = (𝑖ℏ/2𝑚)(𝜓∇𝜓∗ − 𝜓∗∇𝜓), the normalized emission
current density, defined as the ratio of the transmitted current 
density over the incident current density, 𝑤(𝜀, 𝑥, 𝑡) =
𝐽𝑡(𝜀, 𝑥, 𝑡)/𝐽𝑖(𝜀, 𝑥, 𝑡), is calculated.

Photoelectron energy spectra for different in-phase (𝜃=0) two-
color 𝜔-laser 𝐹1 and 2𝜔-laser 𝐹2, and dc fields 𝐹0 are shown in
Fig. 2 [8]. The default values for the calculations are 𝐸𝐹= 5.53
eV, W=5.1 eV (gold); ℏ𝜔=1.55 eV (λ=800 nm). When 𝐹0 is
turned off (Fig. 2(a)), the dominant emission process is four-
photon absorption (n = 4) for the 𝜔 -laser 𝐹1 , indicating
electrons at the Fermi level need to absorb at least four photons 
to overcome the potential barrier (𝑊/ℏ𝜔 = 3.29). Applying a 
strong dc field 𝐹0 opens more tunneling emission channels (n <
4) as shown in Fig. 2(b). For a fixed 𝐹0 , the energy spectra
become broader as 𝐹1 increases, because higher order 𝑛-photon
processes contribute to the photoemission.  

Figure 3 shows the combined effects of the dc field 𝐹0 and the
interference between two-color lasers on the total emission 
current density 〈𝑤〉and modulation depth Γ. As shown in Fig. 
3(a), 〈𝑤〉 oscillates as a function of 𝜃 with a period of 2𝜋, and 
the maximum (minimum) values of 〈𝑤〉 occur around 𝜃=0 (𝜋) 
for a given 𝐹0 . The modulation depth, Γ = (〈𝑤〉𝑚𝑎𝑥 −
〈𝑤〉𝑚𝑖𝑛)/(〈𝑤〉𝑚𝑎𝑥 + 〈𝑤〉𝑚𝑖𝑛), as a function of 𝐹0 is shown in
Fig. 3(b). As 𝐹0 increases, Γ decreases. However, for 𝐹0 up to 3
V/nm (>> the laser fields 𝐹1 = 1.6 V/nm and 𝐹2 = 0.22
V/nm), strong emission current modulation still persists 
(Γ ≥70%), with significantly increased total photoemission 
current. This suggests a practical way to maintain an intense 
modulation to high-current photoemission, by simply adding a 
strong dc bias and a weak harmonic laser [8]. 

Application of our model to the time-resolved photoelectron 
spectroscopy of a tungsten nanotip is shown in Fig. 4. When the 
dc field is small,𝐹0 = 0.01V/nm, n-photon excited states are
modulated in the same way as a function of the phase delay 𝜃. 
However, when 𝐹0  = 0.09 V/nm, the excited states behave
differently with respect to 𝜃. This demonstrates the dynamics 
of n-photon exited states due to two-color lasers depends 
strongly on the dc bias. 
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Figure 1. Energy diagram for electron emission under two-
color laser fields and a dc bias. Electrons with initial energy of 
𝜀 are emitted by absorbing photon energy 𝑛ℏ𝜔, with n being an 
integer [8]. 

Figure 2. Photoelectron energy spectra under different in-

phase (i.e. 𝜃=0) laser fields and dc fields. 

Figure 3. Emission current modulation depth Γ = (〈𝑤〉𝑚𝑎𝑥 −
〈𝑤〉𝑚𝑖𝑛)/(〈𝑤〉𝑚𝑎𝑥 + 〈𝑤〉𝑚𝑖𝑛). Here, 𝜔-laser field 𝐹1 and 2𝜔-laser

field 𝐹2 are 1.6 and 0.22 V/nm respectively.

Figure 4. Time-resolved photoelectron energy spectra for the 

tungsten nanotip. Here, the fundamental (1560 nm) laser field 
𝐹1=1.8 V/nm and the second harmonic laser field 𝐹2=0.3 V/nm. 

978-1-5386-8288-3/20/$31.00 ©2020 IEEE 24




