Two-Color Laser Induced Electron Emission from Biased Metal Surface

Yi Luo and Peng Zhang^{*}

Department of Electrical and Computer Engineering Michigan State University East Lansing, MI, USA, 48824 *Corresponding author: pz@egr.msu.edu

Abstract: By solving the time-dependent Schrödinger equation, we construct an exact analytical solution for nonlinear ultrafast electron emission from a dc-biased metal surface illuminated by two-color laser fields. Our results show a large dc bias can significantly increase the photoemission current, while maintaining a strong current modulation with respect to the phase delay of the two-color lasers. Application of our model to time-resolved photoelectron spectroscopy shows the dynamics of n-photon exited states depends strongly on the dc field.

Keywords: ultrafast photoemission; field emission; two-color lasers; analytical solution; current modulation depth.

Introduction

Electron emission from nanostructures, as driven by highintensity lasers, is a robust method to control electron dynamics in ultrafast scales. It is important to the development of timeresolved electron microscopes, tabletop particle accelerators, free electron lasers, and nanoscale vacuum electronics [1-3]. Recently, photoelectron emission from nanotips driven by twocolor lasers has aroused intense interests [4-6], because of the relatively straightforward manipulation of two-color waveform and the substantial emission current modulation depth. However, the role of dc bias on two-color photoemission processes is not well studied. In this work, we present an exact analytical solution for nonlinear ultrafast photoemission from a dc-biased metal surface driven by two-color laser fields, by the solving time-dependent Schrödinger equation (TDSE) exactly [6-8]. Combined effects of a dc electric field and two-color laser fields are systematically analyzed.

Our one-dimensional (1D) model (see Fig. 1) considers electrons with initial energy ε emitted from a metal surface at x = 0 under a dc electric field F_0 and the illumination of two-color laser fields $F_1 \cos(\omega t)$ and $F_2 \cos(\beta \omega t + \theta)$, where F_1 and F_2 are the amplitudes of laser fields, ω is the fundamental laser frequency, β is a positive integer, and θ is the relative phase [8]. The potential energy can be written as $\Phi(x, t) = 0$ for x < 0inside the metal, and $\Phi(x, t) = W + E_F - exF_0 - exF_1 \cos(\omega t) - exF_2 \cos(\beta \omega t + \theta)$ for x > 0 in the vaccum, where E_F and W are the metal Fermi energy and work function respectively. By solving TDSE,

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2} + \Phi(x,t)\psi(x,t), \qquad (1)$$

the exact solution of electron wave function $\psi(x, t)$ for x < 0and x > 0 is obtained [8], which denotes the superposition of a set of electron waves with eigenenergies $\varepsilon + n\hbar\omega$. By applying boundary conditions that both $\psi(x, t)$ and $\partial \psi(x, t)/\partial x$ are continuous at x = 0, the amplitude of wave function at each state can be determined. Following the probability current density $J(x,t) = (i\hbar/2m)(\psi\nabla\psi^* - \psi^*\nabla\psi)$, the normalized emission current density, defined as the ratio of the transmitted current density over the incident current density, $w(\varepsilon, x, t) = J_t(\varepsilon, x, t)/J_i(\varepsilon, x, t)$, is calculated.

Photoelectron energy spectra for different in-phase (θ =0) twocolor ω -laser F_1 and 2ω -laser F_2 , and dc fields F_0 are shown in Fig. 2 [8]. The default values for the calculations are E_F = 5.53 eV, W=5.1 eV (gold); $\hbar\omega$ =1.55 eV (λ =800 nm). When F_0 is turned off (Fig. 2(a)), the dominant emission process is fourphoton absorption (n = 4) for the ω -laser F_1 , indicating electrons at the Fermi level need to absorb at least four photons to overcome the potential barrier ($W/\hbar\omega$ = 3.29). Applying a strong dc field F_0 opens more tunneling emission channels (n < 4) as shown in Fig. 2(b). For a fixed F_0 , the energy spectra become broader as F_1 increases, because higher order *n*-photon processes contribute to the photoemission.

Figure 3 shows the combined effects of the dc field F_0 and the interference between two-color lasers on the total emission current density $\langle w \rangle$ and modulation depth Γ . As shown in Fig. 3(a), $\langle w \rangle$ oscillates as a function of θ with a period of 2π , and the maximum (minimum) values of $\langle w \rangle$ occur around $\theta=0$ (π) for a given F_0 . The modulation depth, $\Gamma = (\langle w \rangle_{max} - \langle w \rangle_{min})/(\langle w \rangle_{max} + \langle w \rangle_{min})$, as a function of F_0 is shown in Fig. 3(b). As F_0 increases, Γ decreases. However, for F_0 up to 3 V/nm (>> the laser fields $F_1 = 1.6$ V/nm and $F_2 = 0.22$ V/nm), strong emission current modulation still persists ($\Gamma \ge 70\%$), with significantly increased total photoemission current. This suggests a practical way to maintain an intense modulation to high-current photoemission, by simply adding a strong dc bias and a weak harmonic laser [8].

Application of our model to the time-resolved photoelectron spectroscopy of a tungsten nanotip is shown in Fig. 4. When the dc field is small, $F_0 = 0.01$ V/nm, *n*-photon excited states are modulated in the same way as a function of the phase delay θ . However, when $F_0 = 0.09$ V/nm, the excited states behave differently with respect to θ . This demonstrates the dynamics of *n*-photon exited states due to two-color lasers depends strongly on the dc bias.

Acknowledgements

This work is supported by the Air Force Office of Science Research (AFOSR) YIP Award No. FA9550-18-1-0061.

References

- 1. P. G. O'Shea and H. P. Freund, Science 292, 1853-1858, 2011.
- 2. T. Cocker, D. Peller, P. Yu, J. Repp, and R. Huber, Nature 539, 263-267, 2016.

- P. Zhang, Á. Valfells, L. K. Ang, J. W. Luginsland, and Y. Y. Lau, Appl. Phys. Rev. 4, 011304, 2017.
- 4. M. Förster, et al., Phys. Rev. Lett. 117, 217601, 2016.
- 5. W. Huang, M. Becker, J. Beck, and H. Batelaan, New J. Phys. 19, 023011, 2017.
- 6. Y. Luo and P. Zhang, Phys. Rev. B 98, 165442, 2018.
- 7. P. Zhang and Y. Y. Lau, Sci. Rep. 6, 19894, 2016.
- 8. Y. Luo and P. Zhang, Phys. Rev. Applied 12, 044056, 2019.

Figure 1. Energy diagram for electron emission under twocolor laser fields and a dc bias. Electrons with initial energy of ε are emitted by absorbing photon energy $n\hbar\omega$, with *n* being an integer [8].

Figure 2. Photoelectron energy spectra under different inphase (i.e. θ =0) laser fields and dc fields.

Figure 3. Emission current modulation depth $\Gamma = (\langle w \rangle_{max} - \langle w \rangle_{min})/(\langle w \rangle_{max} + \langle w \rangle_{min})$. Here, ω -laser field F_1 and 2ω -laser field F_2 are 1.6 and 0.22 V/nm respectively.

Figure 4. Time-resolved photoelectron energy spectra for the tungsten nanotip. Here, the fundamental (1560 nm) laser field F_1 =1.8 V/nm and the second harmonic laser field F_2 =0.3 V/nm.