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Abstract: A general method for calculating self-
excitation thresholds for a large class of standing and 
traveling wave structures used in klystrons, traveling wave 
tubes, and other vacuum-electronic devices is presented. 
We determine circuit parameters of RF structures that are 
changed due to the presence of electron beam, and analyze 
stability of the obtained matrices. Determinant equations 
defined by such stability matrices are derived. The use of 
the method for structures with round and arbitrary 
geometry beam tunnels is discussed. Analytical stability 
evaluation described here greatly complements the large 
signal beam-wave interaction CHRISTINE and TESLA 
family codes as well as EM PIC codes such as NEPTUNE. 

Keywords: electron beam; circuit parameter matrix; 
multi-port network; rf structure; stability 
 
Introduction 
Vacuum electronic (VE) RF structures with interaction 
gaps and electron (e-) beams used for amplifying RF power 
can turn to unwanted self-excited oscillations. Conditions 
triggering oscillations depend on the structure geometry, 
gaps and e-beam parameters, and port terminations. An 
approach for modeling stability of VE devices using the 
structure gaps’ impedance matrices for computing the 
Nyquist stability criterion has been reported [1].  

This paper presents a method for calculating stability 
thresholds for the beam current and frequencies of self-
oscillations, from the solutions of determinant equations 
that we obtain for the whole structure circuit parameters (Z- 
and Y-matrices) and the beam admittance matrix. The 
analysis also points to the part of the structure (interaction 
gaps, coupling slots, or power ports) causing the instability.  

The impedance (Z-) and admittance (Y-) matrices, can be 
obtained with the finite element 3D electromagnetic code 
Analyst (National Instruments) and using the Z-matrix 
joining method for large complex structures [2]. The beam 
Y-matrix can be computed with the CHRISTINE code.  

RF structure with electron beam 
Z-matrix of an RF structure with interaction gaps describes 
RF voltages and currents produced at the gaps (lumped 
ports) and wave ports (input and output ports) in response 
to the one by one excitation of all ports of such a multiport 
network. One can analyze the Z-matrix (Z1) to determine 
the structure resonant frequencies and oscillation and 
stability conditions. 

E-beam traversing the interaction gaps induces RF voltages 
and currents at the gaps, which is described by the beam 
admittance matrix Y2, defined to be circuit independent. 

This condition assumes no reflection of the beam-induced 
EM-wave in the gaps from the circuit. Because of the 
electrons directed motion through the structure, the Y2-
matrix is essentially triangular and invertible, with the 
beam impedance matrix given by Z2=Y2

-1. 

E-beam injected in the RF structure alters the structure Z-
parameters. We need to find the Z-matrix (ZC) of the 
structure in the presence of the beam. One can then analyze 
the ZC-matrix to determine the ‘hot’ structure resonant 
frequencies and stability (zero-drive self-excitation) 
conditions that differ from the ‘cold’ structure Z1. 
Structures without e-beam (cold, passive) may have 
resonant frequencies but no self-excitation. The structure 
with e-beam can be treated as resulted from parallel 
connection of two multiport networks, merged at the gaps, 
and is designated in shorthand notation by 𝑍ଵ⨁ഥ  𝑍ଶ ⟶ 𝑍஼ . 
The roots of the stability matrix determinant equations 

det 𝑍஼ ൌ 0     and     det 𝑌஼ ൌ 0  , (1) 

where YC is the combined (merged) structure admittance 
matrix, give the self-excitation conditions, caused by the 
current- and voltage-like resonances, respectively. From 
these roots one can determine the e-beam current stability 
thresholds along with the self-oscillation frequencies.  

Circuit parameters of the merged structure 
Assume that Z-matrices of two structures to be merged at 
a set of common lumped ports (gaps) are given as Z1 and 
Z2 and that of the combined structure as ZC. The network 
diagram in Fig. 1 shows the port indexing order and 
categories. Three categories of ports are defined as 
essential, shared, and merged. Essential ports belong to Z1 
and remain present in ZC after merging. Shared ports 
belong to Z2 and remain present in ZC after merging. 
Merged ports are those to be joined and are therefore 
present in equal numbers in both Z1 and Z2, and remain 
present merged in ZC after joining. Essential and shared 
ports can be wave or lumped ports. Merged ports at the 
interaction gaps are always lumped ports.  
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Fig. 1. Block diagram of parallel connection network
showing port indexing and categories. 
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Partition the Z-matrices into block forms grouped 
according to the introduced port categories: 

𝑍ଵ ൌ ቆ
𝑍ଵாா𝑍ଵா௃

𝑍ଵ௃ா 𝑍ଵ௃௃
ቇ   𝑍ଶ ൌ  ቆ

𝑍ଶௌௌ𝑍ଶௌ௃

𝑍ଶ௃ௌ𝑍ଶ௃௃
ቇ  𝑍஼ ൌ ቌ

𝑍஼ாா𝑍஼ாௌ𝑍஼ா௃

𝑍஼ௌா 𝑍஼ௌௌ 𝑍஼ௌ௃

𝑍஼௃ா 𝑍஼௃ௌ 𝑍஼௃௃

ቍ  

where subscripts E, J, and S denote the essential, merged, 
and shared ports. Applying Kirchhoff’s laws together with 
the continuity conditions, eliminate the voltage and current 
variables associated with the merging ports, and obtain 
𝑍஼ ൌ        (2) 

൮

𝑍ଵாா െ 𝑍ଵா௃𝑌ା𝑍ଵ௃ா 𝑍ଵா௃𝑌ା𝑍ଶ௃ௌ 𝑍ଵா௃𝑌ା𝑍ଶ௃௃

𝑍ଶௌ௃𝑌ା𝑍ଵ௃ா 𝑍ଶௌௌ െ 𝑍ଶௌ௃𝑌ା𝑍ଶ௃ௌ   𝑍ଶௌ௃𝑌ା𝑍1𝐽𝐽
𝑍ଶ௃௃𝑌ା𝑍ଵ௃ா 𝑍ଵ௃௃𝑌ା𝑍ଶ௃ௌ 𝑍ଵ௃௃𝑌ା𝑍ଶ௃௃

൲ 

where 𝑌ା ൌ 𝑍ା
ିଵ and  𝑍ା ≡ 𝑍ଵ௃௃ ൅ 𝑍ଶ௃௃ . 

For the combined admittance matrix resulted from merging 
𝑌ଵ⨁ഥ  𝑌ଶ ⟶ 𝑌஼ , where Y1=Z1

-1, YC is found to be 

𝑌஼ ൌ ቌ

𝑌ଵாா 0 𝑌ଵா௃

0 𝑌ଶௌௌ 𝑌ଶௌ௃

𝑌ଵ௃ா 𝑌ଶ௃ௌ 𝑌ଵ௃௃ ൅ 𝑌ଶ௃௃

ቍ       (3) 

In the case of e-beam, there are no shared ports in the Z2 
and Y2 matrices and therefore ZC (2) and YC (3) reduce to 

𝑍஼ ൌ ቆ
𝑍ଵாா െ 𝑍ଵா௃𝑌ା𝑍ଵ௃ா 𝑍ଵா௃𝑌ା𝑍ଶ௃௃

𝑍2𝐽𝐽𝑌൅𝑍1𝐽𝐸 𝑍ଵ௃௃𝑌ା𝑍ଶ௃௃
ቇ      (4)  

𝑌஼ ൌ ቆ
𝑌ଵாா ൅ 𝑌୐ 𝑌ଵா௃

𝑌ଵ௃ா 𝑌ଵ௃௃ ൅ 𝑌ଶ௃௃
ቇ        (5) 

where YL is the wave ports’ load admittance matrix. The 
combined ZC-matrix (4) with the account of the wave ports 
termination YL is given by the transformation, (7) in [2]. 

Self-excitation equations 
From the solutions for the voltage and current at the ports 
obtained for the block-partitioned matrices, arrive at the 
self-excitation conditions for YC and ZC given by (5) and 
(4), respectively for voltage- (selected equations shown) 

቎
det ቀ𝑌ଵ௃௃ ൅ 𝑌ଶ௃௃ቁ ൌ 0

det ൬𝑌ଵாா ൅ 𝑌୐ െ 𝑌ଵா௃ ቀ𝑌ଵ௃௃ ൅ 𝑌ଶ௃௃ቁ
ିଵ

𝑌ଵ௃ா൰ ൌ 0
     

ሺ6.1ሻ

ሺ6.2ሻ
 

and for current-like resonances 

⎣
⎢
⎢
⎡1 det ቀ𝑍ଵ௃௃

ିଵ ൅ 𝑌ଶ௃௃ቁൗ ൌ 0

det ቀ𝑍஼ாா െ 𝑍஼ா௃ ቀ𝑍ଵ௃௃
ିଵ ൅ 𝑌ଶ௃௃ቁ 𝑍஼௃ாቁ ൌ 0

1/detሺ𝕀 ൅ 𝑌୐𝑍஼ሻ ൌ 0

                

ሺ7.1ሻ

ሺ7.2ሻ

ሺ7.3ሻ

 

where 𝕀 is the identity matrix. In such representation, (6.1) 
and (7.1) describe local self-excitations due to the gaps, 
(6.2) and (7.2) consider the rest of the structure, and (7.3) 
infers the wave port terminations. A complete set of the 
self-excitation equations includes all possible partitions of 
the YC, ZC-matrices formed by adding to JJ-block essential 
ports from EE-block with all possible permutations as well 
as the reciprocal determinants. 

The beam current self-excitation thresholds found using (6) 
and (7) for the example multigap Ka-band serpentine 
waveguide with a 0.32-mm radius beam in a 0.4-mm radius 
beam tunnel are shown in Fig. 2. The calculations assume 
the 23.5 kV beam voltage, at which, with respect to the 
structure frequency dispersion properties, the backward-
wave self-oscillation instability may be triggered. For each 
model with the varying number of gaps, we compute the 
required structure Z1 and beam Y2-matrix that are frequency 
dependent. The latter also depends on the beam current.  

Beam tunnel of arbitrary geometry 
In case of a round beam tunnel CHRISTINE can compute 
the required beam admittance Y2-matrix. For the arbitrary 
geometry beam tunnel, we suggest first to compute the 
circuit parameters for an auxiliary structure constructed 
from the beam tunnel and gaps only, without and with the 
e-beam. The beam-loaded circuit parameters are obtained 
then from the short-time PIC simulation with NEPTUNE. 
From these data we derive the Y2-matrix for the beam 
tunnel of arbitrary geometry, needed as input for defining 
the self-excitation equations.  

The stability threshold calculations, multibeam structures, 
and PIC simulations will be shown at the Conference. 
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Fig. 2. An example multi-gap structure (top) and the 
obtained stability conditions (bottom).  
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