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Abstract: This paper presents an efficient eigensolver based on 
finite element method (FEM) for metallic-lossy multigap cavities in 
extended interaction klystrons (EIKs).  By modeling a W-band sheet-
beam EIK (SBEIK), the eigensolver is validated. Moreover, it is 
found that our eigensolver is much more efficient than the widely 
used commercial FEM code i.e. HFSS, which would be very useful 
for the design of multigap cavities of EIKs.  
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INTRODUCTION 

The multigap cavity is one of most important parts of the 
extended interaction klystron (EIK), because it determines the 
power, bandwidth and efficiency of the EIK. A critically 
important step in the design of EIK is conducting eigenanlysis 
for the multigap cavity using computational electromagnetic 
methods such as finite element method (FEM) [1]. However, 
the eigenanlysis of lossy multigap cavity by FEM often places a 
heavy burden on the time consumption owing to the following 
two reasons. First, in the eigenanalysis of multigap cavity, a 
large number of spurious dc modes corresponding to the 
irrotational solutions of the vector wave equation occur at zero 
frequency. The spurious dc modes make it difficult to calculate 
the smallest eigenvalues and even result in failing to converge 
to the desired eigenmodes. Second, because of the metallic 
lossy of multigap cavity, the eigenanalysis of the multigap 
cavity has to solve a large scale non-linear generalized 
eigenvalue problem. To overcome defects mentioned above, we 
present a new 3-D eigensolver, which adopts a hierarchical 
vector FEM with second-order basis, for the metallic-lossy 
multigap cavity. The application of this eigensolver not only 
obtains the cold parameters accurately, but also reduces the 
CPU time and memory requirement. 

THEORY AND FORMULATION 

The boundary value problem (BVP) for the finite-element 
analysis of metallic-lossy cavities of EIK can be written as 
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where 0k is the free-space wavenumber, n


is the outgoing 
normal on the boundary surfaces, and the metal surface 
impedance      
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imposed surface impedance boundary condition (SIBC). If we 
perform a divergence operation for the vector wave equation 
and set 0 0k  , the divergence-free constraint equation (3) may 

no longer hold, which leads to the spurious dc modes appear. 
Hence, it is necessary to impose (3) on (1) and (2) as a 
constraint equation to eliminate the dc modes. 

By using Galerkin’s procedure [1], the weak formulation 
for BVP (1)-(3) is first obtained, i.e. 
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where v


and   are test basis functions, and v V


, and 
  G V (V is the basis functions space). If basis space V 

can be completely decomposed into a pure gradient part G and 
a rotational part R, and = V G R and  G R , the spurious 
dc modes can be very efficiently removed without directly 
solving equation (5). The decomposition of basis functions 
space V is realized by adopting the hierarchical vector basis 
function proposed by Sun et al. [2], and implementing the 
tree-cotree splitting [3] on all metallic-lossy boundaries of 
multigap cavity. The detail of this procedure will be given in 
the presentation. Then, (4) can be now expressed in matrix 
form as: 
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and iN  represents the ith basis function. It is clear that (6) is a 
fourth-order nonlinear generalized eigenvalue problem. We 
use a symmetric linearization technique to transform (6) into a 
symmetric linear generalized eigenvalue problem as: 
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where  0k  . From (7), it can be seen that the matrix 

dimension of linear generalized eigenvalue problem is four 
times than that of (6). Hence, solving (7) is very inefficient. To 
address this difficulty, in the solution procedure of (7) using 
traditional implicitly restarted Arnoldi method, we apply a 
new p-type multigrid preconditioner and an inverse-based 
multifrontal block incomplete LU factorization. After 
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removing the spurious dc modes, the solution of (7) can be 
further improved. Consequently, a remarkable efficient 
eigensolver for metallic-lossy multigap cavity of EIK is 
obtained. By using this eigensolver, arbitrary resonant mode 
and its characteristic impedance R/Q in the cavity are able to 
be calculated very accurately and fast.  

NUMERICAL RESULTS 
To validate the accuracy and the efficiency of the proposed 

eigensolver, we compare the results and computational 
performance with HFSS (AnsysEM 19.2) by simulating the 
multigap cavity of a W-band sheet-beam EIK (SBEIK) [4]. All 
simulations are conducted on a win10 64-bit intel core 2 2.3-
GHz and 16-GB RAM laptop, meanwhile second-order basis 
function has been selected in HFSS.  

The structure of the multigap cavity is shown in Fig. 1, and 
the model is consisted of the vacuum and the copper. The 
distance P between the adjacent gaps is designed to be 1.5 mm, 
and the gap width d is designed to be 0.38 mm. Fig. 2 shows 
the first 14 modes error analysis of the resonant frequency of 
the W-band SBEIK computed by two simulators. Then, the 
performance comparison is shown in Table I, from which we 
can see that the proposed eigensolver achieved a speedup of up 
to quadruple compared by HFSS. 

 
Fig. 1. Structure and CAD model of the W-band SBEIK. 

 
Fig. 2. Comparison of the resonant frequency computed by two 

simulators. 

TABLE I.  PEFORMANCE COMPARISON 

Simulator 
Degrees of 

freedom 
Matrix Size 

CPU time 
(hh:mm:ss) 

Proposed 112,332 996,190 00:12:17 

HFSS 111,423 965,661 00:51:29 

 
Finally, we compare the parameters of the W-band SBEIK 

working in 95GHz. The E-field distribution of the model 

calculated by two solvers is plotted as shown in Fig. 3. The 
integral line is selected on the upper surface of gaps of the drift 
tube, and Table II shows the relative errors in converged mesh. 

CONCLUSION 
This paper has presented an efficient eigensolver for 

simulation of the multigap cavity of EIKs. Then a W-band 
SBEIK model is simulated to demonstrate the accuracy of the 
proposed eigensolver. The application of our eigensolver 
dramatically reduces the required computing time compared 
with commercial simulator HFSS, which would be very useful 
for the design of high-performance EIKs. 

 
(a) 

 
(b) 

Fig. 3. Displacement distribution of E-field compared with HFSS. 
Distribution of E-field simulated by HFSS (a). Distribution of E-field 
simulated by proposed eigensolver (b).  

TABLE II.  PROPERTIES OF THE CAVITY OF A W-BAND SBEIK 

Simulators 
Quantities 

HFSS Proposed 
Relative 
error(%) 

Frequency(GHz) 95.0932 95.1225 0.03 

Q 1,303.48 1,313.11 0.74 

R/Q(Gap 1) 4.2479 4.2298 0.43 

R/Q(Gap 2) 1.7782 1.7960 1.00 

R/Q(Gap 3) 2.9559 2.9723 0.55 

R/Q(Gap 4) 1.7730 1.7751 0.12 

R/Q(Gap 5) 4.1958 4.1715 0.58 
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