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Abstract
The π-point stopband in helical delay-lines due to asym-
metries is analyzed. For this, we model the structure as
a conductor-backed coplanar waveguide. The stopband is
evaluated from the effective transmission-line parameters
and the results are compared to full-wave simulation. Al-
though the approach is quite general, we only consider non-
ideal support-rod positions in this contribution. Finally, the
stopband is modeled by applying the coupled-mode theory,
including a simple coupling-coefficient estimation.

INTRODUCTION
Asymmetries in the beam-wave interaction region of he-
lix traveling-wave tubes (TWTs) lead to a coupling of the
forward- and backward-propagating modes. Asymmetries
are for instance caused by off-centered electron beams or
by non-ideal delay-lines. In case of beam-wave synchro-
nism at the so-called π-point, where the phase advance in
the ω-β diagram is π, parasitic π-mode oscillations (PMOs)
are very likely to be excited [1] as any asymmetry lowers
the oscillation threshold significantly compared to that of
backward-wave oscillations. Although inherent beam-wave
synchronism at the π-point can be avoided during the tube
design, providing a stable tube in the case of small-signal
drive levels in general, high beam-efficiency operation alters
the beam-wave synchronism and the interaction can shift
into the π-mode region. The resulting instability is known
as drive-induced oscillation (DIO).
In this contribution, we propose computationally efficient
modeling and evaluation of the stopband caused by mis-
aligned support rods in helical delay-lines as a starting point
of an in-depth numerical analysis of PMO and DIO. First,
similarly to [2] and [3], the unit winding is modeled by
transmission lines (TLs) where the corresponding param-
eters are in our case gained from an analogy to coplanar
waveguides (CPWs). The resulting dispersion is compared
to full-wave simulation. Subsequently, the stopband is ex-
pressed by a coupling coefficient between the forward- and
backward wave like in [1]. This allows to accurately model
the stopband by means of the coupled-mode theory from [4].

EQUIVALENT-CIRCUIT MODEL
At typical TWT operating frequencies, the electromagnetic
helix-field is spatially distributed across the barrel’s volume.
At higher frequencies, i.e., around the π-point frequency fπ
here, it is more concentrated between the windings and has
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Figure 1. Helical delay-line and equivalent conductor-backed
CPW with electric field distribution at fπ .
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Figure 2. TL lengths from the delay-line geometry.

a phase advance of π per helix winding. Thus, the helix
behaves much like a conductor-backed CPW for even mode
propagation as illustrated in Figure 1. From the cross section
of the unit winding shown in Figure 2, one can then easily
derive the equivalent TL model in Figure 3. It consists of
six TLs representing the three support-rod sections and the
segments in between. Besides the misalignment of a single
support rod, causing a line-length imbalance of ∆l, the model
also includes other asymmetries, such as a variation of the
support rod permittivity or size. In case of a vane loading,
additional TLs are needed.
The CPW geometry can directly be determined from the
helical delay-line, the conductor cross-section being that of
the helix wire and the substrate height that of the support-
rod. The relative permittivity of the CPW substrate is either
εr,ROD or one. The characteristic impedance and the ef-
fective relative permittivity of the CPW can be computed
from [5]. The line lengths have to be chosen according to
an effective helix radius which ranges somewhere between
the inner and the average helix-radius at the π-point. The
choice of the effective helix radius possibly shifts fπ by a
few percent but hardly affects the stopband behavior. The un-
certainty obviously increases with the helix-wire thickness.
Here, for better comparison, the value is adjusted to fit fπ
obtained from full-wave simulation.
Replacing the TLs by lumped elements from [6] and concate-
nating their chain matrices yields the transmission matrix of
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Figure 3. Transmission-line model.
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Figure 4. π-point stopband from simulation and from the
equivalent circuit (EC) for different support-rod offset-angles.

the equivalent circuit model. Subsequently, the stopband is
obtained by computing its eigenvalues. As Figure 4 shows,
the results compare well with those from an eigenmode sim-
ulation in CST [7] for different support-rod offsets.

COUPLING COEFFICIENT ESTIMATION
In the preceding section, the π-point stopband was deter-
mined from the equivalent circuit model. In the next step, it
is modeled by means of the coupled-mode theory from [4]
and directly linked to a frequency-independent coupling-
coefficient c between the propagating modes of the sym-
metric helix
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where a1 and a2 are the complex amplitudes of the forward
and the backward wave, respectively, and β1 and β2 their
respective propagation constants. The prime denotes coupled
waves. The propagation constants of the coupled waves
follow from the eigenvalues of the matrix in Equation (1)
with
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By approximating the slope of the dispersion curve by fπ/π
and equating the square-root term in Equation (2) to zero,
the coupling coefficient can be calculated from the relative
bandwidth ∆f/fπ of the stopband to

|c| ≈ ∆f

fπ
· π

2p
. (3)

Here, p denotes the helix pitch. Figure 5 compares the
dispersion obtained from the equivalent circuit and from
the coupled-mode theory. The decoupled propagation con-
stants β1 and β2 are extracted from the equivalent circuit
for the symmetric helix and the applied coupling coeffi-
cient is gained from the equivalent circuit with the respective
support-rod misalignment. The curves are almost identical
and thus, the coupled-mode theory and the equivalent-circuit
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Figure 5. Stopband at the π-point from the equivalent circuit
(EC) and from the coupled-mode theory.

model are suitable for a computationally efficient as well as
simple stopband and coupling-coefficient estimation for the
analysis of delay-line asymmetries.

CONCLUSION
The helical delay-line of TWTs is modeled as a conductor-
backed coplanar waveguide around its π-point frequency.
From the various delay-line asymmetries the model can ac-
count for, only support-rod misalignments are considered
here. The results match well with full-wave simulation. Fur-
thermore, the stopband is modeled by means of the coupled-
mode theory, which allows to easily extract the coupling
coefficient. Compared to geometry-driven approaches, this
work yields an appropriate and computationally-efficient rep-
resentation of the stopband, and is thus a useful supplement
of fast TWT simulation tools.
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