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Abstract: We present a new approach to the study of the 
stability of Vacuum Electronic devices using the large-signal 
code TESLA-Z. The approach combines a precomputed 
complex impedance matrix for the structure Z with a TESLA 
computed admittance matrix Y of the beam-tunnel loaded with 
an electron beam. The gain matrix G for a given device then 
can be found as the product of the Z-matrix of the structure 
and admittance matrix Y of the beam-tunnel. Subsequent 
analysis of the eigenvalues of the gain-matrix G uses the 
Nyquist method to determine the stability of the device. We 
discuss details of the new algorithms and illustrate its 
application using available examples.  
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Introduction 

The stability of Vacuum Electronics Devices (VEDs) is an 
important issue, which become more urgent as designers of 
new VEDs push the boundaries of performance in bandwidth 
and power. It is highly desired to address the problem of 
potential instability at the design stage of the device.  This can 
involve estimation of margins of stability controlling design 
tolerances. Traditionally, Particle-in-Cell (PIC) codes are used 
as a tool to check the stability of a given design. However, PIC 
code runs require a long run-time to ensure that enough time 
has elapsed for the instability to develop and reveal itself. 
Further, even if device is found to be stable for the given set of 
parameters, a single PIC code run cannot predict how close the 
device is to marginal stability.  The usual practice is to vary 
parameters such as beam-current, beam-voltage and/or end-
reflection coefficients to find input parameters that will make 
the device unstable. This process thus requires many time 
consuming runs. 

In this work we report an alternative approach to stability study 
using a framework based on the large-signal code TESLA-Z 
[1] and its extensions. The approach allows one to predict 
stability margins and thresholds of instability [2].  
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Extension of the TESLA-Z Algorithm to Include 
Stability Analysis of VEDs 

The recently developed at NRL 2D large-signal code TESLA-
Z is a general purpose, geometry-driven tool targeted at 
modeling of linear-beam VEDs based on a wide class of 
resonance and/or slow-wave structures (SWSs). The modeling 
approach is based on the representation of the VED’s structure 
as a generalized network of ports (including actual input/output 
ports and interaction gaps) whose frequency dependent 
properties (response) can be fully characterized by a 
generalized impedance matrix Z representing the linear 
relationship between imposed currents and induced voltages at 
all gaps/ports: 

     . (1) 
   

where ω is angular frequency.  

The impedance matrix Z can be computed using a 3D 
Computational Electromagnetic (CEM) code (such as HFSS 
[3] or Analyst [4], for example) and then utilized by the large-
signal algorithm in TESLA-Z to model VED’s beam-wave 
interaction. Due to the geometry-driven nature of the approach 
employed in TESLA-Z, its algorithm allows modeling of a 
wide class of VEDs, including Travelling-wave Tubes (TWTs) 
and klystrons. The parallel extension of the TESLA-Z 
algorithm allows accurate modeling of multiple-beam devices, 
such as multiple-beam TWTs [5] and Multiple-beam Klystrons 
(MBKs) [6].  

As a next step in the development of the algorithm we extend 
the code TESLA-Z to make it suitable for studying stability in 
various VEDs. In particular, we develop a way to find a gain 
matrix G for a given device and then analyze its eigenvalues g 
to determine the existence of unstable solutions. To find the 
gain matrix G, we first compute an admittance matrix Y of the 
beam-tunnel loaded with the electron beam. For this purposes 
we use the domain separation method in the TESLA-Z 
algorithm, which uses separate and independent field 
representations inside and outside of the beam-tunnel. This 
allows us to model beam-tunnel independently of the structure 
(outside to beam-tunnel region). By imposing unit voltage one 
by one on each gap of the structure we then can find the 
currents induced at each gap by the bunched electron beam. 
This allows us to represent the generalized response of the 
beam-tunnel in the form of an admittance matrix Y, where 
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    . (2) 

 

Combining formulas (1) and (2) give us: 
      

 

or      (3)
  

 

where the product of the Z and Y matrices becomes the gain 
matrix G. The elements of the matrix G are complex, analytic 
functions of frequency. Threshold of unstable solutions 
correspond to values of complex frequency for which an 
eigenvalue g of the gain matrix satisfies g=1. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As both the Z and Y matrices are computed for real frequency, 
we use Nyquist’s method to determine if there are any complex 
frequencies in the upper-half plane giving g=1. To do this, we 
plot the eigenvalues g in the complex plane as the real  

frequency is varied through the band of interest. According to 
Nyquist’s method [7], the net encirclement of g=1 (see Fig.2), 
gives the number of unstable solutions.   

The procedure of computing the beam-tunnel admittance 
matrix Y and then finding the matrix G together with its 
subsequent analysis has been implemented in the TESLA-Z 
algorithm. It was verified and then validated by comparisons 
with available data on stability of experimental devices. We 
will present examples of successful predictions of instability 
using this approach.  
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Figure 1. Schematic view of the slow-wave structure with the beam-tunnel and electron beam propagating inside of it.     
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Figure 2. Schematic plot for evolution of the Real and 
Imaginary parts of the gain-matrix eigen-value g on the 
complex plane as it traced in frequency; here is shown 

the case when during such evolution eigenvalue g 
encircles unit to indicate that analyzed system became 

unstable.  
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